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Abstract

In a recent paper [13], an algorithm has been presented for determining implications be-
tween a particular kind of category theoretic property represented by matrices — the so called
‘matrix properties’. In this paper we extend this algorithm to include matrix properties involv-
ing pointedness of a category, such as the properties of a category to be unital, strongly unital
or subtractive, for example. Moreover, this extended algorithm can also be used to deter-
mine whether a given matrix property is the Bourn localization of another, thus leading to
new characterizations of Mal’tsev, majority and arithmetical categories. Using a computer im-
plementation of our algorithm, we can display all such properties given by matrices of fixed
dimensions, grouped according to their Bourn localizations, as well as the implications be-
tween them.
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Introduction

In this paper we are concerned with closedness properties of internal relations [18], which are
also simply referred to as ‘matrix properties’. The term ‘matrix property’ derives itself from the
presentation of these properties, which for our purposes, may always be presented simply as an
extended matrix whose entries are in the set {∗, x1, x2, . . . }. Here the symbols x1, x2, . . . represent
variables, and ∗ represents a constant symbol. For instance, the property of a finitely complete
category to be a Mal’tsev category [5, 6] is equivalent to the requirement that (each binary internal
relation in) the category satisfies the matrix property determined by the matrix

�

x1 x2 x2 x1

x2 x2 x1 x1

�

.

An extended matrix, such as the one above, is said to be non-pointed if it does not contain ∗ as
an entry. Other examples of categorical properties which are captured by a non-pointed matrix
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property include the property of a category to be a majority category [8] (see also [10]) as well
as the property to be a (finitely complete) arithmetical category [20]. For matrices containing
∗’s, one also needs the category to be pointed in order to state the corresponding matrix property.
Therefore, in general, each extended matrix whose entries are in the set {∗, x1, x2, . . . } gives rise
to a matrix property on finitely complete pointed categories. In addition to the restriction to the
pointed context of the above mentioned properties, one can cite the properties to be a unital [4],
strongly unital [4] or subtractive category [17] as examples.

In the literature, it has been shown that some matrix properties follow from a conjunction of
others: a finitely complete category is arithmetical if and only if it is both Mal’tsev and a majority
category (see [13, 7, 8]). Furthermore, a finitely complete pointed category is strongly unital if
and only if it is unital and subtractive [17]. In the non-pointed context, an explicit algorithm has
been developed in [13] which decides whether a conjunction of non-pointed matrix properties
implies another one; however, the pointed case was not considered. The first aim of this paper is to
treat this case and give an algorithm for determining whether a conjunction of matrix properties
on finitely complete pointed categories implies another one. In particular, our algorithm can
decide when a single matrix property implies another. We have implemented this algorithm on
a computer in order to get a picture of the properties induced by matrices of relatively small
dimensions and the implications between them. See for instance Figure 6 representing all non-
equivalent matrix properties of finitely complete pointed categories given by 4× 3 matrices (not
counting the right column highlighted in gray) with entries in {∗, x1}, as well as the relationships
between them. In that picture, as in all figures of Section 6, each variable x i is represented by its
index i.

These algorithms allow one to compute some finite parts of the posets Mclex∗ and Mclex, i.e.,
the posets of collections of finitely complete pointed categories (respectively finitely complete cat-
egories) defined via matrix properties (respectively non-pointed matrix properties) and ordered
by inclusion. Since each non-pointed matrix property can be restricted to the pointed context,
one has an order-preserving function

(−)∗ : Mclex→Mclex∗.

Using the process of ‘Bourn localization’ (introduced in [19] from the ideas of [4]), we show that
this function (−)∗, regarded as a functor between preorder categories, has a right adjoint

Loc: Mclex∗→Mclex.

This adjunction enables us to prove that, given two non-trivial non-pointed matrices, one has the
implication between the corresponding matrix properties in the finitely complete context if and
only if the analogous implication holds in the finitely complete pointed context. Moreover, it is
shown in [19] how to effectively compute the Bourn localization of a (pointed) matrix property.
In our displays of the finite subposets of Mclex∗ computed via the computer, we can thus group
together matrix properties with the same Bourn localization, see e.g. Figure 4. See also Figure 8
which represents the subposet ofMclex∗ whose elements are induced by 3×4 matrices with entries
in {∗, x1, x2} and such that their Bourn localization is the collection of Mal’tsev categories. This
figure thus gives many more characterizations of Mal’tsev categories via the fibration of points
in the style of [4]. Moreover, in this way, we also get new characterizations of finitely complete
arithmetical categories as well as majority categories (see Figures 10 and 11).

The paper is organized as follows:

• Section 1 recalls the relevant concepts necessary for the rest of the paper.
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• Section 2 deals with the concept of S-injectivity as introduced in [13] in the non-pointed
case.

• Section 3 characterizes those matrix properties (in the pointed context) which determine
the collection of categories equivalent to the terminal category 1 and those which determine
the collection of all finitely complete pointed categories.

• Section 4 studies the posets Mclex and Mclex∗ and the adjunction between them given by
restriction and Bourn localization.

• Section 5 derives the main result of this paper, which is the algorithm for determining im-
plications between matrix properties in the finitely complete pointed context.

• Section 6 presents some of the computer-assisted results which have been obtained based
on the results of the previous sections.

Lastly, we have presented the results of this paper to be mainly self-contained. However, as
our results are heavily based on [13], we encourage the reader to read the introduction of [13],
in order to see our results here in context.

1 Preliminaries

We will sometimes denote a pointed set (S,∗) simply by S if there is no ambiguity on the distin-
guished element ∗ of S. Given two objects X and Y in a category C, we write as usual C(X , Y )
for the set of all morphisms X → Y . When the category C is pointed, i.e., when it admits a zero
object, we will consider this set C(X , Y ) as a pointed set with the distinguished element being the
zero morphism X → Y . As it is customary, we write Cop for the dual of a category C.

Let us fix throughout this paper an infinite sequence x1, x2, x3, . . . of pairwise distinct variables.
Given integers n > 0 and m, k ⩾ 0, we write matr∗(n, m, k) for the set of all n× (m+ 1) matrices
whose entries are elements of the free pointed set on k-variables {∗, x1, . . . , xk}, and we write
matr∗ for the union of all such sets. We will display such an (extended) matrix M = [x i j]i, j ∈
matr∗(n, m, k) by





x11 . . . x1m x1 m+1
...

...
...

xn1 . . . xnm xn m+1





and refer to the first m columns as the left columns of M . The matrix formed by the left columns
of M is called the left part of M , and is denoted by Ml. Similarly, the last column of the matrix
is called the right column of M and is denoted by Mr. Given a sequence ((S1,∗1), . . . , (Sn,∗n)) of
pointed sets, a row-wise interpretation of M of type ((S1,∗1), . . . , (Sn,∗n)), is an n× (m+1) matrix





f1(x11) . . . f1(x1m) f1(x1 m+1)
...

...
...

fn(xn1) . . . fn(xnm) fn(xn m+1)





whose entries are obtained by applying to each row of M a specified pointed function

fi : {∗, x1, . . . , xk} → Si

where ‘pointed’ means as usual that fi is a morphism in the category Set∗ of pointed sets, i.e.,
that fi(∗) = ∗i. Given a pointed set (S,∗), an (ordinary) interpretation (i.e., a ‘non-row-wise’
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interpretation) of M of type (S,∗) is a row-wise interpretation of M of type ((S,∗), . . . , (S,∗)) for
which f1 = · · ·= fn.

Given n > 0, an internal n-ary relation (between objects C1, . . . , Cn) in a category C is given
by a jointly monomorphic span (ri : R → Ci)1⩽i⩽n, i.e., a span such that, for any two parallel
morphisms x , y : X → R with an arbitrary domain X , if ri x = ri y for all i ∈ {1, . . . , n}, then
x = y . If C1 = · · · = Cn = C , we say that the n-ary relation (ri : R → C)1⩽i⩽n is a relation on
the object C . When C has finite products, an internal n-ary relation in C can also be viewed as
a monomorphism r : R↣ C1 × · · · × Cn, with ri = πi r, where πi denotes i-th product projection
πi : C1× · · · × Cn→ Ci. Up to identification of monomorphisms into an object with ‘subobjects’ of
that object, we can say that n-ary relations in Set∗ between the pointed sets (C1,∗1), . . . , (Cn,∗n)
are (ordinary) pointed relations, i.e., subsets R ⊆ C1 × · · · × Cn containing (∗1, . . . ,∗n).

Given an internal n-ary relation r of domain R between C1, . . . , Cn in a pointed category C,
a matrix M ∈ matr∗(n, m, k) and an object X in C, we say that r is compatible with a row-wise
interpretation





g11 . . . g1m h1
...

...
...

gn1 . . . gnm hn





of M of type (C(X , C1), . . . ,C(X , Cn)) when, if there exist morphisms u1, . . . , um : X → R such that




g1 j
...

gn j



=





r1u j
...

rnu j





for each j ∈ {1, . . . , m}, then there exists a morphism v : X → R such that




h1
...

hn



=





r1v
...

rnv



 .

Following [18], we say that r is strictly M-closed over X when it is compatible with any row-wise
interpretation of M of type (C(X , C1), . . . ,C(X , Cn)) and we say that r is strictly M-closed if it is
strictly M -closed over every object X . Again according to [18], we say that an n-ary relation
(ri : R→ C)1⩽i⩽n on an object C is (non-strictly) M-closed over an object X when it is compatible
with any interpretation of M of type C(X , C) and we say that r is M-closed if it is M -closed over
every object X .

Theorem 1.1. [18]. Let n> 0 and m, k ⩾ 0 be integers, M ∈matr∗(n, m, k) be an extended matrix
and C be a finitely complete pointed category. The following statement are equivalent:

• every n-ary relation in C is strictly M-closed;

• every n-ary relation on an object in C is M-closed.

When the equivalent conditions in the above theorem are satisfied, we say that C has M-closed
relations.

We recall that a variety of universal algebras V is pointed if and only if its theory contains a
unique constant term, i.e., the theory of V contains a nullary term ∗ and for any two such terms
∗ and ∗′, the theorem ∗ = ∗′ holds in the theory. An n-ary internal relation in a pointed variety
V between the algebras A1, . . . , An is (up to identification of ‘subobjects’ and ‘monomorphisms’)
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a pointed relation R ⊆ A1 × · · · × An compatible with the operations of V. Given a matrix M ∈
matr∗(n, m, k), such a relation R is strictly M -closed if and only if for any row-wise interpretation





a11 . . . a1m a1 m+1
...

...
...

an1 . . . anm an m+1





of M of type (A1, . . . , An), we have:










a11
...

an1



 , . . . ,





a1m
...

anm











⊆ R =⇒





a1 m+1
...

an m+1



 ∈ R.

We can characterize pointed varieties of universal algebras with M -closed relations in the follow-
ing way.

Theorem 1.2. [18]. Let n > 0 and m, k ⩾ 0 be integers, M = [x i j]i, j ∈ matr∗(n, m, k) be an
extended matrix and V be a pointed variety of universal algebras with constant term ∗. Then V has
M-closed relations if and only if its theory admits an m-ary term p satisfying the equation

p(x i1, . . . , x im) = x i m+1

in the variables x1, . . . , xk for any i ∈ {1, . . . , n}.

For a given M ∈matr∗(n, m, k), the collection of all finitely complete pointed categories with
M -closed relations is denoted by mclex∗{M} and is called a matrix class (of finitely complete
pointed categories) in this paper (this notation abbreviates the term ‘matrix class of left exact
pointed categories’ in which ‘left exact pointed category’ is an alternative name for a ‘finitely
complete pointed category’). Note that the word ‘class’ here does not refer to its set-theoretic
meaning, since such a matrix class could not be a class in the set-theoretic sense. By a matrix
property (of a finitely complete pointed category) we mean here the property to have M -closed
relations for a given matrix M (as in [16]).

Remark 1.3. Let us warn the reader that the way we display matrices in matr∗(n, m, k) here is
slightly different from how they are displayed in [18, 19] where 0 is used instead of ∗, or from
[13]where integers are used instead of variables and where the right columns have been omitted.
Indeed, in [13], the right column could be made the same for all matrices without changing the
corresponding properties on finitely complete categories. They could therefore be omitted. In
the present paper, the right column can contain variables and ∗’s and thus they cannot, a priori,
be made all the same. This explains why we have to write them explicitly here. Also, we have
preferred ∗’s instead of 0’s not to confuse them with the 0’s from [13]. Finally, the choice of
variables instead of integers has been made to stay closer to the original notation as can be found
in [18].

We say that a matrix M ∈matr∗(n, m, k) is non-pointed if it does not have ∗ as one of its entries,
and denote the subset ofmatr∗ consisting of all non-pointed matrices bymatr. Borrowing notation
from [13], we write matr(n, m, k) for the set matr∗(n, m, k)∩matr. For a non-pointed matrix M ,
the notion of a category with M -closed relations extends to the (not necessarily pointed) finitely
complete context in the obvious way. As in [13], we denote by mclex{M} the collection of finitely
complete categories with M -closed relations. Therefore, for a non-pointed matrix M , mclex∗{M}
is the sub-collection of mclex{M} consisting of pointed categories in mclex{M}.
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By a matrix set we simply mean a subset S of matr∗. We denote by mclex∗S the collection of all
finitely complete pointed categories which have M -closed relations for each matrix M in S, i.e.,
the intersection

⋂

M∈S mclex∗{M}. This extends the notion of a matrix set from [13] where only
matrix sets containing non-pointed matrices were considered (and up to the change of notation
as explained above). We thus say that a matrix set is non-pointed if it is a subset of matr. For a
non-pointed matrix set S, we denote by mclexS the collection of all finitely complete categories
which have M -closed relations for each matrix M in S, i.e., the intersection

⋂

M∈S mclex{M}.

Example 1.4. The following table shows on the left some examples of matrices and on the right
the corresponding matrix classes. We denote by 1 the category with a single object and a single
morphism. The references indicates where the corresponding exactness properties have been
introduced, possibly in a different context than that of finitely complete pointed categories.

Extended matrix Matrix class

M =
�

x1 x2 x2 x1

x2 x2 x1 x1

�

(pointed) Mal’tsev categories [5, 6]

M =





x2 x1 x1 x1

x1 x2 x1 x1

x1 x1 x2 x1



 (pointed) majority categories [8]

M =





x1 x2 x2 x1

x2 x2 x1 x1

x1 x2 x1 x1



 (finitely complete pointed) arithmetical categories [20]

M =
�

x1 ∗ x1

∗ x1 x1

�

unital categories [4]

M =
�

x1 ∗ ∗ x1

x2 x2 x1 x1

�

strongly unital categories [4]

M =
�

x1 ∗ x1

x1 x1 ∗

�

subtractive categories [17]

M =
�

x1

�

categories equivalent to 1

M =
�

∗
�

all finitely complete pointed categories

Example 1.5. According to Theorem 1.2, the matrix properties in Example 1.4 all determine a
corresponding Mal’tsev condition for pointed varieties of universal algebras. For instance, the
matrix corresponding to the collection of subtractive categories determines a binary operation
s(x , y) which satisfies the equations s(x ,∗) = x and s(x , x) = ∗, i.e., a subtraction. On the other
hand, many well known Mal’tsev conditions may be strengthened to a Mal’tsev condition which
is determined by a matrix property. This process has been described in [13] (see Remark 1.8
therein) and was termed syntactical refinement. To illustrate this process in the pointed context,
we consider the Mal’tsev condition obtained in [9] corresponding to the commutativity of binary
products with coequalizers. For a pointed variety V (where ∗ is the unique constant symbol) this
Mal’tsev condition asserts that there exists integers m ⩾ 0 and n ⩾ 1 such that V admits binary
terms bi(x , y) and unary terms ci(x) for each 1 ⩽ i ⩽ m and (m + 2)-ary terms p1, p2, . . . , pn
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satisfying the equations:

p1(x , y, b1(x , y), . . . , bm(x , y)) = x ,

pi(y, x , b1(x , y), . . . , bm(x , y)) = pi+1(x , y, b1(x , y), . . . , bm(x , y)) for each i ∈ {1, . . . , n− 1},
pn(y, x , b1(x , y), . . . , bm(x , y)) = y,

pi(∗,∗, c1(x), . . . , cm(x)) = x for each i ∈ {1, . . . , n}.

We may strengthen this condition by assuming that n = 1 and letting p = p1, then the resulting
equations reduce to

p(x , y, b1(x , y), . . . , bm(x , y)) = x ,

p(y, x , b1(x , y), . . . , bm(x , y)) = y,

p(∗,∗, c1(x), . . . , cm(x)) = x .

This condition may be further strengthened by assuming that the terms bi(x , y) and ci(x) are
actually variables so that m = 2, b1(x , y) = x , b2(x , y) = y and c1(x) = c2(x) = x . Doing this
reduces the above equations to

p(x , y, x , y) = x ,

p(y, x , x , y) = y,

p(∗,∗, x , x) = x .

These equations, in turn, determine a matrix property which is determined by the matrix

M =





x1 x2 x1 x2 x1

x2 x1 x1 x2 x2

∗ ∗ x1 x1 x1



 .

This matrix property is then such that any pointed variety of universal algebras that satisfies it
necessarily has that binary products commute with coequalizers. This procedure of syntactical re-
finement can then be applied to other Mal’tsev conditions which apply to pointed varieties, such as
for instance anticommutativity in the sense of [11] or normality of projections in the sense of [15].
In the first case, the syntactical refinement of the Mal’tsev condition appearing in Theorem 3.1
of [11] is only satisfied by varieties of universal algebras equivalent to the terminal category 1
(i.e., the corresponding matrix is trivial in the sense of Section 3). In the second case, syntactical
refinement of the Mal’tsev condition appearing in Theorem 3 of [15] yields the matrix





x1 x1 ∗ x1

x1 ∗ x1 ∗
x1 ∗ ∗ x1





whose corresponding Mal’tsev condition on pointed varieties of universal algebras implies the
normality of projections. Using the algorithm presented in this paper, one can show that the
matrix class determined by this matrix is the collection of subtractive categories, which illustrates
the fact that subtractive categories have normal projections [17].

According to Proposition 1.7 in [19], we know that:

• Given two matrices M ∈ matr∗(n, m, k) and N ∈ matr∗(n′, m, k′) such that every row of N
is a row of M , then any finitely complete pointed category with M -closed relations also has
N -closed relations, i.e., mclex∗{M} ⊆mclex∗{N}.
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• Given two matrices M ∈matr∗(n, m, k) and N ∈matr∗(n, m′, k′) such that every left column
of M is a left column of N and the right column of M is the same as the right column
of N , then any finitely complete pointed category with M -closed relations also has N -closed
relations, i.e., mclex∗{M} ⊆mclex∗{N}.

It follows immediately from these statements that matrix properties are invariant under dupli-
cation and permutation of left columns and of rows of the matrices. It is also clear that the
matrix property arising from M ∈ matr∗(n, m, k) is the same as the one arising from M viewed
in matr∗(n, m, k′) for any k′ ⩾ k. It is also evident that matrix properties are invariant under
addition of a left column of ∗’s and permutation of the variables x1, . . . , xk in a specified row.

The notions of M -closedness and strict M -closedness have been studied in [18, 19]. A third
type of closedness property has been introduced in [13]. Given a matrix M ∈ matr∗(n, m, k),
we say that an internal n′-ary relation in a pointed category is M-sharp if it is strictly M ′-closed
under any matrix M ′ obtained from any selection of n′ rows from M . Note that in this notion,
the number n of rows of M is not required to be exactly n′; one can have n > n′, n = n′ or
n < n′. By the above remark, a finitely complete pointed category has M -closed relations if
and only if every n′-ary internal relation in it is M -sharp for any positive integer n′. We also
have a designated concept of an interpretation for the closedness property of sharpness: given
pointed sets (S1,∗1), . . . , (Sn′ ,∗n′), we define a reduction of type ((S1,∗1), . . . , (Sn′ ,∗n′)) of a matrix
M ∈matr∗(n, m, k) to be a row-wise interpretation of type ((S1,∗1), . . . , (Sn′ ,∗n′)) of some matrix
M ′ ∈ matr∗(n′, m, k) such that every row of M ′ is a row of M , and where duplicate left columns
of the row-wise interpretation have been (possibly) deleted as well as left columns (possibly)
permuted or duplicated. Then an internal n′-ary relation between the objects C1, . . . , Cn′ in a
pointed category C is M -sharp if and only if it is compatible with every reduction of M of type
(C(X , C1), . . . ,C(X , Cn′)) (for an arbitrary object X ).

Example 1.6. To illustrate the concept of M -sharpness, let us consider the matrix

M =
�

x1 ∗ ∗ x1

x2 x2 x1 x1

�

from Example 1.4 representing strongly unital categories. A binary relation is M -sharp if it is
strictly Mi j-closed for all i, j ∈ {1,2} where

M11 =
�

x1 ∗ ∗ x1

x1 ∗ ∗ x1

�

M12 = M =
�

x1 ∗ ∗ x1

x2 x2 x1 x1

�

M21 =
�

x2 x2 x1 x1

x1 ∗ ∗ x1

�

M22 =
�

x2 x2 x1 x1

x2 x2 x1 x1

�

.

Since the right column of M11 can be found in its left columns (and analogously for M22), any
binary relation is strictly M11-closed and strictly M22-closed. Hence, a binary relation is M -sharp
if and only if it is strictly M -closed and strictly M21-closed. In the category Set∗, let us consider
the pointed binary relation

R=
§�

∗
∗

�

,
�

a
∗

�

,
�

a
a

�ª

⊂ A2

on the two-element pointed set A = {∗, a}. This relation is strictly M -closed since, given two
pointed functions f1, f2 : {∗, x1, x2} → {∗, a} such that

�

f1(x1)
f2(x2)

�

,
�

f1(∗)
f2(x2)

�

,
�

f1(∗)
f2(x1)

�

∈ R,
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one automatically has f2(x1) = f2(x2) = ∗ and therefore

�

f1(x1)
f2(x1)

�

∈ R.

Moreover, since R is reflexive, we can see that it is (non-strictly) M21-closed. However, R is not
strictly M21-closed since

�

a a ∗ ∗
a ∗ ∗ a

�

is a row-wise interpretation of M21 of type (A, A) whose left columns are in R but not its right
column. Therefore, R is not M -sharp which shows that, in general, when the arity n′ of the
relation R on an object is the same as the number n of rows of the matrix M ∈matr∗, the condition
‘R is M -sharp’ is strictly stronger than the condition ‘R is strictly M -closed’, which is itself strictly
stronger than the condition ‘R is M -closed’. Note that when n ̸= n′, the comparison between
M -sharpness and (strict) M -closedness does not make sense.

2 S-injective objects

Given a matrix set S and extending the notions from [13], we call an object X in a pointed category
C an S-injective object if, for every matrix M ∈ S, every internal n-ary relation on any object in Cop

is M -closed over X , where n is the number of rows of M . If C is finitely cocomplete (i.e., if Cop is
finitely complete), this is equivalent to require that, for every matrix M ∈ S, every internal n-ary
relation in Cop is strictly M -closed over X , where n is the number of rows of M . It is not difficult
to see that S-injective objects are closed under all limits that exist in the pointed category. We
write InjSC for the full subcategory of C consisting of all S-injective objects. We say that C has
enough S-injective objects if for any object C in C there is a monomorphism C ↣ D for which D is
S-injective.

Given a matrix M = [x i j]i, j ∈ matr∗(n, m, k), a pointed category C with finite products and
finite coproducts, and an object X in C, we denote by πX

Ml
the canonical map from the coproduct

nX k to the product X m given by the matrix

πX
Ml
=





πx11
. . . πx1m

...
...

πxn1
. . . πxnm





where π∗ stands for the zero morphism X k→ X and πx1
, . . . ,πxk

stand for the product projections
X k → X . Similarly, we denote by πX

Mr
the canonical map from the coproduct nX k to X given by

the column

πX
Mr
=





πx1 m+1
...

πxn m+1



 .

We say that the category C has universal epi-factorizations if every morphism f admits a fac-
torization f = gh via an epimorphism h such that any similar factorization f = g ′h′ with h′ an
epimorphism yields h = uh′ for a (necessarily unique) morphism u. Such a factorization is of
course unique up to isomorphism and we call it the universal epi-factorization of f . The following
theorem is the ‘pointed version’ of Theorem 2.2 of [13].
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Theorem 2.1. Let n > 0 and m, k ⩾ 0 be integers, M ∈ matr∗(n, m, k) be a matrix, C be a pointed
category with finite products, finite colimits and universal epi-factorizations, and X be an object
of C. Considering the universal epi-factorization πX

Ml
= iX

Ml
rX

Ml
of πX

Ml
, the following statements are

equivalent:

(1) X is {M}-injective.

(2) Every internal n-ary relation in Cop is strictly M-closed over X .

(3) There exists a morphism pX
M : RX

Ml
→ X making the diagram

X m

nX k

rX
Ml

}}}}

πX
Mr

��

πX
Ml

bb

RX
Ml

iX
Ml

OO

pX
M

// X

commute.

Proof. As mentioned above, the equivalence (1)⇔(2) holds because C is finitely cocomplete.
To prove the implication (1)⇒(3), we consider the epimorphism rX

Ml
: nX k ↠ RX

Ml
as an n-ary

relation in Cop. We also consider the interpretation of M of type Cop(X , X k) = C(X k, X ) given
by the pointed function f : {∗, x1, . . . , xk} → C(X k, X ) defined by f (x i) = πx i

, the i-th projection
X k→ X , for each i ∈ {1, . . . , k}. SinceπX

Ml
factorizes through rX

Ml
and since this relation is M -closed

over X in Cop, we know that πX
Mr

must also factorize through rX
Ml

.
It remains to prove the implication (3)⇒(1). Let us consider an n-ary internal relation on an

object C in Cop, viewed as an epimorphism r : nC ↠ R in C. Let us also consider an interpretation
of M of type Cop(X , C) = C(C , X ) given by a pointed function f : {∗, x1, . . . , xk} → C(C , X ). This
function f induces a morphism g : C → X k such that πx i

g = f (x i) for each i ∈ {1, . . . , k}. We
denote by ng : nC → nX k the n-fold coproduct of the morphism g. Given a factorisation ofπX

Ml
◦ng

through r as in
X m

nX k

πX
Mr

!!

πX
Ml

hh

nC
r

||||

ng

<<

X

R

33

OO

we must show that πX
Mr
◦ ng also factors through r. Considering the pushout of r along ng,

nC

r
����

ng
// nX k

r ′
����

R // R′
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it suffices to show that πX
Mr

factors through r ′ under the assumption that πX
Ml

does.

X m

nX k

r ′

||||

πX
Mr

!!

πX
Ml

bb

R′

OO

// X

Since πX
Ml
= iX

Ml
rX

Ml
is a universal epi-factorization, there exists a morphism u: R′→ RX

Ml
such that

ur ′ = rX
Ml

. The required morphism R′→ X is then given by the composite pX
Mu.

We will later need the following result, which is the direct adaptation to the pointed context
of Theorem 3.1 in [13], itself coming from the ideas of [21]. The proof being analogous to the
one in [13], we omit it here.

Theorem 2.2. Let C be a pointed category having finite limits and finite colimits and where every
morphism factorizes as an epimorphism followed by an equalizer. Consider two matrix sets S ⊆ T.
If C has enough T-injective objects, then InjSC is the largest full subcategory of C among those that
contain all T -injective objects, are closed under finite limits, and whose dual categories have M-closed
relations for every M ∈ S.

3 Trivial and anti-trivial matrices

A matrix M ∈ matr∗ is said to be trivial if the matrix class mclex∗{M} consists exactly of those
categories which are equivalent to 1, the single morphism category. Since those categories belong
to mclex∗{N} for all N ∈ matr∗, one has mclex∗{M} ⊆ mclex∗{N} for any trivial matrix M and
any matrix N . This section is devoted to the proof of Theorem 3.1 which characterizes trivial
matrices. In view of that theorem and of Theorem 2.3 in [13], we know that a non-pointed matrix
M ∈ matr ⊂ matr∗ is trivial in our sense if and only if it is trivial in the sense of [13], i.e., if and
only if any finitely complete category with M -closed relations is a preorder (see Corollary 3.2).

Given a matrix M = [x i j]i, j ∈ matr∗(n, m, k) and an integer i ∈ {1, . . . , n}, we denote by RMi

the kernel relation on the set {1, . . . , m} induced by the left part of the i-th row of M seen as a
map {1, . . . , m} → {∗, x1, . . . , xk}, i.e.,

j RMi
j′ ⇔ x i j = x i j′ .

Given i, i′ ∈ {1, . . . , n}, we denote by R∗Mi,i′
the equivalence relation on the set {1, . . . , m} defined

by
j R∗Mi,i′

j′ ⇔ ( j = j′) or ((x i, j = ∗ or x i′, j = ∗) and (x i, j′ = ∗ or x i′, j′ = ∗))

We also consider the equivalence relation RMi
∨RMi′
∨R∗Mi,i′

given by the join of the three equivalence
relations RMi

, RMi′
and R∗Mi,i′

. Finally, given a pointed set (Y,∗), we say that M is functional in (Y,∗)
if, given i, i′ ∈ {1, . . . , n} and two pointed functions

fi, fi′ : {∗, x1, . . . , xk} → Y

such that fi(x i j) = fi′(x i′ j) for all j ∈ {1, . . . , m}, one has fi(x i m+1) = fi′(x i′m+1). Using Theo-
rem 2.1 with C= Set∗ and X = (Y,∗), since RX

Ml
is in that case the image of π(Y,∗)

Ml
, it is not difficult

to see that M is functional in (Y,∗) if and only if (Y,∗) is an {M}-injective object in Set∗.
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Theorem 3.1. Given integers n > 0 and m, k ⩾ 0 and a matrix M = [x i j]i, j ∈ matr∗(n, m, k), the
following conditions are equivalent:

(1) M is not a trivial matrix.

(2) Setop∗ has M-closed relations.

(3) The following three conditions are all satisfied:

• every row of M whose right entry is x i m+1 ̸= ∗ contains x i m+1 as one of its left entries,

• given i, i′ ∈ {1, . . . , n} and j, j′ ∈ {1, . . . , m} such that i ̸= i′ and

x i j = x i m+1 ̸= ∗ ≠ x i′ j′ = x i′m+1,

then j RMi
∨ RMi′

∨ R∗Mi,i′
j′,

• given i, i′ ∈ {1, . . . , n} and j ∈ {1, . . . , m} such that x i j = x i m+1 ̸= ∗= x i′m+1, there exists
j′ ∈ {1, . . . , m} such that j RMi

∨ RMi′
∨ R∗Mi,i′

j′ and either x i j′ = ∗ or x i′ j′ = ∗.

(4) M does not have a reduction of type ({∗, x1}) or ({∗, x1}, {∗, x1}) given by any of the following
four matrices:

�

x1

�

,
�

∗ x1

�

,
�

x1 x1

x1 ∗

�

,
�

x1 ∗ x1

x1 ∗ ∗

�

.

(5) M is functional in every pointed set.

(6) M is functional in a two element pointed set.

(7) M is functional in a pointed set having at least two elements.

Proof. The implications (5)⇒(6)⇒(7) are obvious. Let us show (7)⇒(4). Suppose (4) does not
hold and let (Y,∗) be a pointed set and y ∈ Y with y ̸= ∗. If

�

x1

�

�

respectively
�

∗ x1

�

,
�

x1 x1

x1 ∗

�

, or
�

x1 ∗ x1

x1 ∗ ∗

��

is a reduction of M , so is
�

y
∗

� �

respectively
�

∗ y
∗ ∗

�

,
�

y y
y ∗

�

, or
�

y ∗ y
y ∗ ∗

��

showing that M is not functional in (Y,∗).
Let us now prove (4)⇒(3). Suppose (3) does not hold and let us show that (4) does not hold

neither. If m= 0, this means that M has a row with x i m+1 ̸= ∗ as right entry (and empty left part)
and therefore M admits

�

x1

�

as a reduction. If m > 0 and M has a row whose right entry is x i m+1 ̸= ∗ but for which x i m+1 is
not a left entry, then

�

∗ x1

�

is a reduction of M . If the second condition of (3) is not satisfied, there exist i, i′ ∈ {1, . . . , n} and
j, j′ ∈ {1, . . . , m} such that i ̸= i′ and x i j = x i m+1 ̸= ∗ ≠ x i′ j′ = x i′m+1 but where j RMi

∨RMi′
∨R∗Mi,i′

j′

12



does not hold. By definition of R∗Mi,i′
, up to swapping (i, j) with (i′, j′), we can suppose without

loss of generality that if x i j′′ = ∗ or x i′ j′′ = ∗ for some j′′ ∈ {1, . . . , m}, then j RMi
∨ RMi′

∨ R∗Mi,i′
j′′

does not hold neither. The columns of M can then be divided into two disjoint sets: the j′′-th
column will be in the first set if j RMi

∨RMi′
∨R∗Mi,i′

j′′ and in the second set otherwise. Interpreting,
in the i-th and the i′-th rows of M , each entry in the first set of columns as x1 and the other ones
as ∗, this guarantees that M admits

�

x1 ∗ x1

x1 ∗ ∗

�

as a reduction. Suppose now the third condition of (3) is not satisfied with i, i′ ∈ {1, . . . , n} and
j ∈ {1, . . . , m} such that x i j = x i m+1 ̸= ∗ = x i′m+1. If there is no ∗ in the left part of the i-th and
i′-th rows of M , it admits

�

x1 x1

x1 ∗

�

as a reduction. Otherwise, there exists j′ ∈ {1, . . . , m} such that either x i j′ = ∗ or x i′ j′ = ∗. By
assumption, we know that j RMi

∨RMi′
∨R∗Mi,i′

j′ does not hold. Dividing the columns of M in two
sets and considering the interpretation as above, we also get that M admits

�

x1 ∗ x1

x1 ∗ ∗

�

as a reduction.
Next, we prove (3)⇒(5). Suppose (5) does not hold. We can thus find a pointed set (Y,∗),

i, i′ ∈ {1, . . . , n} and two pointed functions fi, fi′ : {∗, x1, . . . , xk} → Y such that fi(x i j) = fi′(x i′ j) for
all j ∈ {1, . . . , m} but fi(x i m+1) ̸= fi′(x i′m+1). If i = i′, then the first condition of (3) gets violated.
Let us thus suppose that i ̸= i′. We can see that, if j1, j2 ∈ {1, . . . , m} satisfy j1 RMi

∨RMi′
∨R∗Mi,i′

j2,
then fi(x i j1) = fi(x i j2) = fi′(x i′ j1) = fi′(x i′ j2). Since we cannot have x i m+1 = x i′m+1 = ∗, we
can also suppose without loss of generality that x i m+1 ̸= ∗. Not to violate the first condition
of (3), there should exist j ∈ {1, . . . , m} such that x i j = x i m+1. If x i′m+1 ̸= ∗, then, again not to
contradict the first condition of (3), there exists j′ ∈ {1, . . . , m} such that x i′ j′ = x i′m+1. But since
fi(x i j) = fi(x i m+1) ̸= fi′(x i′m+1) = fi′(x i′ j′), one cannot have j RMi

∨ RMi′
∨ R∗Mi,i′

j′, violating the
second condition of (3). If x i′m+1 = ∗, not to contradict the third condition of (3), there exists
j′ ∈ {1, . . . , m} such that j RMi

∨ RMi′
∨ R∗Mi,i′

j′ and either x i j′ = ∗ or x i′ j′ = ∗. By our remark
above, this means that fi(x i m+1) = fi(x i j) = fi(x i j′) = fi′(x i′ j′) = ∗ = fi′(x i′m+1), leading to a
contradiction. We have therefore already proved the equivalences (3)⇔(4)⇔(5)⇔(6)⇔(7).

Since Setop∗ is not equivalent to the single morphism category, the implication (2)⇒(1) is
straightforward from the definition of a trivial matrix. To prove (5)⇒(2), it suffices to recall that
M is functional in a pointed set (Y,∗) exactly when (Y,∗) is an {M}-injective object in Set∗, i.e.,
when internal n-ary relations in Setop∗ are M -closed over (Y,∗). It remains now to prove (1)⇒(4).
We suppose that (4) does not hold and we consider a finitely complete pointed category C with
M -closed relations. If M has

�

x1

�

or
�

∗ x1

�

as a reduction, then, for an arbitrary object C
in C, the identity morphism C → C must factors through the subobject 0↣ C where 0 is the zero
object of C, proving that C is itself a zero object. If M admits

�

x1 x1

x1 ∗

�

or
�

x1 ∗ x1

x1 ∗ ∗

�

as a reduction, then the morphism (1C , 0): C → C × C induced by the identity on an object C
and the zero morphism C → C should factors through the diagonal (1C , 1C): C ↣ C × C proving
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again that 1C is the zero morphism and thus C is a zero object. This proves that C is equivalent
to 1 and thus M is a trivial matrix.

The equivalence (1)⇔(3) of this theorem, in the case where M is a non-pointed matrix,
reduces to the characterization of trivial matrices in the sense of [13] (i.e., non-pointed matrices
M for which any finitely complete category inmclex{M} is a preorder). One thus has the following
corollary.

Corollary 3.2. A non-pointed matrix M ∈ matr is trivial (in the sense of the present paper) if and
only if it is trivial in the sense of [13].

Let us now turn our attention to anti-trivial matrices. A matrix M ∈ matr∗ is said to be anti-
trivial if all finitely complete pointed categories have M -closed relations. The following theorem
characterizes anti-trivial matrices. We invite the reader to compare the equivalence (1)⇔(2) of
it with the equivalence (1)⇔(2) of Theorem 3.1.

Theorem 3.3. The following conditions on a matrix M ∈matr∗ are equivalent:

(1) M is anti-trivial.

(2) Set∗ has M-closed relations.

(3) All the entries of the right column of M are ∗’s or this right column of M can be found among
its left columns.

Proof. The implication (1)⇒(2) follows immediately from the definition of anti-trivial matrices.
For the implication (2)⇒(3), if M ∈ matr∗(n, m, k), we consider the n-ary pointed relation R on
the pointed set {∗, x1, . . . , xk} formed by the left columns of M and the column made of n many ∗’s.
If Set∗ has M -closed relations, R should also contain the right column of M , which implies (3).
Finally, the implication (3)⇒(1) follows from the definition of M -closedness.

Again, the equivalence (1)⇔(3) of the above theorem, in the case where M is a non-pointed
matrix, reduces to the characterization of anti-trivial matrices in the sense of [13] (i.e., non-
pointed matrices M for which any finitely complete category is in mclex{M}). One thus has the
following corollary.

Corollary 3.4. A non-pointed matrix M ∈ matr is anti-trivial (in the sense of the present paper) if
and only if it is anti-trivial in the sense of [13].

4 The posets Mclex and Mclex∗ and Bourn localizations

In [13], we studied the collection Mclex of collections mclex{M} of finitely complete categories
given by non-pointed matrices M ∈ matr. In a similar way, we introduce here the collection
Mclex∗ of collections mclex∗{M} for matrices M ∈matr∗. We regard Mclex and Mclex∗ as posets
with the order given by inclusion. We have an order-preserving function

(−)∗ : Mclex→Mclex∗

given by intersection with the collection of pointed categories, i.e., for a non-pointed matrix M ,
(−)∗ sends mclex{M} to mclex∗{M}.
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In order to describe a right adjoint to this function (seen as a functor between preorder cate-
gories), we need to recall the concept of Bourn localizations. LetC be a given finitely complete cat-
egory. A point in C is a pair of morphisms (p : A↠ I , s : I ↣ A) such that the composite ps is 1I , the
identity on I . A morphism of points (p, s)→ (p′, s′) is a pair of morphisms (u: A→ A′, v : I → I ′)
in C such that vp = p′u and us = s′v.

A u //

p
����

A′

p′
����

I v
//

OO
s

OO

I ′
OO
s′

OO

This forms the category Pt(C) of points of C. Together with this category, we have a forgetful
functor

π: Pt(C) −→ C

A
p
// // I
oosoo 7−→ I

(u, v) 7−→ v

called the fibration of points [3]. Given an object I in C, the fibre of π over I is denoted by
PtI(C) and consists of the subcategory of Pt(C) of points and morphisms mapped by π to I and
1I respectively. Each such fibre is a finitely complete pointed category, the zero object being the
point (1I , 1I). Using the terminology recalled in Example 1.4, D. Bourn showed in [4] that the
following statements are equivalent:

• C is a Mal’tsev category;

• for all objects I of C, the fibre PtI(C) is unital;

• for all objects I of C, the fibre PtI(C) is strongly unital;

• for all objects I of C, the fibre PtI(C) is a Mal’tsev category.

In [17], Z. Janelidze showed that these conditions are also equivalent to

• for all objects I of C, the fibre PtI(C) is subtractive.

As in [19], for a collection C of finitely complete pointed categories, we denote by Loc(C ) the
Bourn localization of C , i.e., the collection of finitely complete categories C for which, given any
object I in C, the category PtI(C) is inC . Given a non-pointed matrix M = [x i j]i, j ∈matr(n, m, k)
and a variable x among x1, x2, x3, . . . , we denote by M[x → ∗] the matrix in matr∗(n, m, k) ob-
tained by replacing each occurrence of x in M by ∗. We say that the pair (M , x) is admissible if
there exists a left column of M





x1 j
...

xn j





such that, for each i ∈ {1, . . . , n}, if there is a j′ ∈ {1, . . . , m+ 1} such that x i j′ = x , then x i j = x .
The following theorem generalizes the above mentioned results from [4] and [17].

Theorem 4.1. [19]. Given a non-pointed matrix M ∈ matr and a variable x among x1, x2, x3, . . .
for which the pair (M , x) is admissible, one has

mclex{M}= Loc(mclex∗{M[x → ∗]}).
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In particular, this theorem shows that for a non-pointed matrix M ∈matr(n, m, k), one has

mclex{M}= Loc(mclex∗{M})

provided that m > 0. If m = 0, mclex{M} is the collection of categories equivalent to 1 and
Loc(mclex∗{M}) is the collection of finitely complete preorders. So, in any case, one has at least
the inclusionmclex{M} ⊆ Loc(mclex∗{M}). Moreover, given a (pointed) matrix N ∈matr∗(n, m, k),
Theorem 4.1 implies that

Loc(mclex∗{N}) =mclex{Nloc}

where Nloc ∈matr(n, m+1, k+1) is obtained from N by first adding a left column of ∗’s and then
replace all ∗’s by xk+1. Bourn localizations thus induce an order-preserving function

Loc: Mclex∗→Mclex

sending mclex∗{N} to Loc(mclex∗{N}). It is easy to see that this function gives a right adjoint to
(−)∗ : Mclex→Mclex∗, i.e., that

mclex{M} ⊆ Loc(mclex∗{N})⇐⇒mclex∗{M} ⊆mclex∗{N}

holds for any non-pointed matrix M and any (pointed) matrix N . Indeed, supposing mclex{M} ⊆
Loc(mclex∗{N}) and given a finitely complete pointed category C with M -closed relations, we
know that all fibres PtI(C) have N -closed relations. Taking I to be a zero object of C gives a
category which is isomorphic to C which thus has N -closed relations. The converse inclusion
follows immediately from mclex{M} ⊆ Loc(mclex∗{M}).

Mclex
(−)∗

11
Mclex∗

Loc
rr

⊤

In addition, this right adjoint is also ‘almost a left inverse’ of (−)∗ in the sense that mclex{M} =
Loc(mclex∗{M}) holds for any non-pointed matrix M with at least one left column. Therefore, if
M and M ′ are two non-pointed matrices such that mclex∗{M} ⊆ mclex∗{M ′}, then mclex{M} ⊆
Loc(mclex∗{M ′}) and thus either mclex{M} ⊆ mclex{M ′} or mclex{M} is the collection of all
finitely complete preorders and mclex{M ′} is the collection of all categories equivalent to 1. This
discussion leads us to the following theorem.

Theorem 4.2. Let S and U be non-pointed matrix sets such that U does not contain any matrix with
no left columns. Then one has mclex∗S ⊆mclex∗U if and only if mclexS ⊆mclexU.

Let us immediately note that, if S is the singleton consisting of the trivial matrix
�

x2 x1

�

∈
matr(1,1, 2) and U is the singleton consisting of the trivial matrix

�

x1

�

∈ matr(1,0, 1), one
has that mclexU = mclex∗S = mclex∗U is the collection of all categories equivalent to 1 while
mclexS is the collection of all finitely complete preorders. Therefore, mclex∗S ⊆ mclex∗U holds
but mclexS ⊆ mclexU does not. In other words, the function (−)∗ is not injective but is not far
from being it, i.e., for two non-pointed matrices M and M ′, one has

mclex∗{M}=mclex∗{M ′} ⇐⇒ (mclex{M}=mclex{M ′} or (M and M ′ are trivial matrices)).

We know from [13] that Mclex is infinite but countable. In view of the above properties of
the function (−)∗, we can deduce that Mclex∗ is also infinite and it is not hard to see that it is
also countable. On the other hand, it is proved in [13] that Mclex is a meet semi-lattice with the
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meet operation being given by the intersection of the corresponding collections of categories. It
seems the same argument cannot be transposed to the pointed context and we therefore leave
as an open question whether finite conjunctions of matrix properties of finitely complete pointed
categories are again matrix properties, and the question whether Mclex∗ is a meet semi-lattice.

Given integers n > 0 and m, k ⩾ 0, we have denoted in [13] by Mclex[n, m, k] the restriction
of the poset Mclex to those mclex{M} given by non-pointed matrices M ∈ matr(n, m, k). Adapt-
ing this notation, we denote by Mclex∗[n, m, k] the restriction of Mclex∗ to those matrix classes
mclex∗{M} given by matrices M ∈ matr∗(n, m, k). Obviously, each of these posets is finite. For
very small values of the parameters n, m, k, in view of Theorems 3.1 and 3.3, we can have a
complete description of these posets:

• Mclex∗[n, m, 0] contains only the collection of all finitely complete pointed categories.

• When k > 0, Mclex∗[n, 0, k] = Mclex∗[n, 1, k] = Mclex∗[1, m, k] has exactly two matrix
classes given by the collection of all finitely complete pointed categories and the collection
of categories equivalent to 1.

In view of this, we will call a matrix class (of finitely complete pointed categories) degenerate if
it is determined by a trivial matrix or an anti-trivial matrix. That is, the degenerate matrix classes
are the following two:

• the matrix class given by trivial matrices, i.e., the collection of categories equivalent to 1,
or in other words, the bottom element of the poset Mclex∗;

• the matrix class given by anti-trivial matrices, i.e., the collection of all finitely complete
pointed categories, or in other words, the top element of the poset Mclex∗.

Remark 4.3. Since the left adjoint (−)∗ preserves the top element, we know that the collection
of all finitely complete pointed categories is the only element of Mclex∗ sent by Loc to the top
element of Mclex, i.e., the collection of all finitely complete categories. Similarly, in view of
Theorem 3.1, it is not hard to see that given a non-trivial matrix N , the non-pointed matrix Nloc

is also non-trivial and thus the bottom element of Mclex∗ is the only element being mapped by
Loc to the collection of finitely complete preorders, i.e., the unique atom of Mclex. Let us also
notice that, given a non-pointed matrix M with at least one left column, in view of the counit of
the adjunction (−)∗ ⊣ Loc, the matrix class mclex∗{M} is the smallest element of Mclex∗ whose
Bourn localization is mclex{M}.

Remark 4.4. Given integers n > 0 and m, k ⩾ 0, we know that the Bourn localization of a
matrix class mclex∗{N} for a matrix N ∈ matr∗(n, m, k) is given by mclex{Nloc}, where Nloc ∈
matr(n, m+ 1, k+ 1). The function Loc therefore restricts as an order-preserving function

Loc: Mclex∗[n, m, k]↠Mclex[n, m+ 1, k+ 1]

(denoted in the same way by abuse of notation). Moreover, in view of the construction of Nloc

from N , it is easy to see that this function is actually surjective.

Let us notice that a matrix M ∈ matr∗(n, m, k) with n > 0 and m, k ⩾ 0 (i.e., a n × (m + 1)
matrix with entries in {∗, x1, . . . , xk}) can have at most (k+1)n different left columns. One of these
columns is the right column of M , whose presence makes M anti-trivial. Among those (k + 1)n

possibilities for the left columns of M , there is also the column of ∗’s. If this column is the right

17



column, M is again anti-trivial. If the column of ∗’s belongs to the left of M , one can remove it
without changing the corresponding matrix class. Therefore, one has the inclusion

Mclex∗[n, m, k] ⊆Mclex∗[n, (k+ 1)n − 2, k]

for all n, k > 0 and m ⩾ 0. Applying Remark 4.4 here, we know that Loc restricts to a surjective
function

Loc: Mclex∗[n, (k+ 1)n − 2, k]↠Mclex[n, (k+ 1)n − 1, k+ 1]

where, as shown in [13], Mclex[n, (k + 1)n − 1, k + 1] contains all elements of Mclex, different
from the bottom element, and induced by a non-pointed matrix with n rows and k+ 1 variables.
Moreover, if a matrix M ∈ matr∗(n, m, k) has the left entries of its i-th row consisting of m dif-
ferent variables, then, for any i′ ∈ {1, . . . , n}, the equivalence relation RMi

∨ RMi′
∨ R∗Mi,i′

used in
Theorem 3.1 is nothing but RMi′

. In view of this and of that theorem, it is easy to prove that such
a matrix induces a degenerate matrix class mclex∗{M}. This proves that

Mclex∗[n, m, k] ⊆Mclex∗[n, m, m− 1]

for all n > 0, m > 1 and k ⩾ 0. In addition, if M is a non-trivial matrix in matr∗(n, m, m − 1),
up to permutation of variables, we can assume that the right column is only made of x1’s and ∗’s.
There are mm different rows with x1 as right entry, to which we can subtract the (m− 1)m rows
which does not contain x1 on the left (in view of Theorem 3.1). There are also mm different
rows with ∗ as a right entry, to which we can remove the row of ∗’s which does not influence the
corresponding matrix class (see for instance our algorithm in the next section). The matrix class
induced by M is thus the same as the matrix class determined by a matrix made of a maximum
of 2mm − (m− 1)m − 1 rows. This observation leads to the fact that the inclusion

Mclex∗[n, m, k] ⊆Mclex∗[2mm − (m− 1)m − 1, m, m− 1]

holds for all n> 0, m> 1 and k ⩾ 0.

5 The algorithm

Theorem 4.2 shows that, to decide whether mclex∗S ⊆mclex∗U for finite non-pointed matrix sets
S and U , it is equivalent, in non-trivial cases, to use the algorithm of [13] which decide whether
mclexS ⊆ mclexU . In this section, we present an analogue algorithm for the case where S and
U are not necessarily non-pointed. In order to do so, adapting the ideas of [13], themselves
based on the ideas of [8], let us now study S-injective objects in the category of n-ary pointed
relations. For each non-zero natural number n, we consider the category Reln

∗ whose objects
are triples (X ,∗, R) where (X ,∗) is a pointed set and R is an n-ary pointed relation on X (i.e., a
subset R ⊆ X n containing (∗, . . . ,∗)), and whose morphisms (X ,∗, R) → (X ′,∗′, R′) are relation-
preserving pointed functions, i.e., functions f : X → X ′ such that f (∗) = ∗′ and such that there
exists a (necessarily unique) dashed morphism rendering the diagram

R� _

��

// R′� _

��

X n
f n
// X ′n
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commutative. The forgetful functor Reln
∗ → Set∗ is a topological functor (see e.g. [2]) and there-

fore Reln
∗ is a complete and cocomplete pointed category. Moreover, the limit/colimit of a dia-

gram in Reln
∗ has as its underlying pointed set the limit/colimit of the underlying diagram in Set∗,

equipped with the largest/smallest pointed relation making the canonical projections/inclusions
relation-preserving. It is then not difficult to see that, given a matrix M ∈matr∗, an object (X ,∗, R)
of Reln

∗ is an {M}-injective object if and only if M is functional in the pointed set (X ,∗) and R is
M -sharp. This is because, if we consider the diagram in Theorem 2.1 applied to (X ,∗, R) in Reln

∗ ,
we have that M functional in the pointed set (X ,∗) and R is M -sharp if and only if the pointed
function pX

M exists and is a morphism in Reln
∗ , i.e., is relation-preserving. Furthermore, when M is

not a trivial matrix, we can drop ‘M is functional in (X ,∗)’ by virtue of Theorem 3.1, i.e., (X ,∗, R)
is {M}-injective if and only if R is M -sharp. We can also see that for a matrix set S, the category
InjSReln

∗ forms a full reflective subcategory of Reln
∗ . Given an object (X ,∗, R) in Reln

∗ , its reflection
f : (X ,∗, R)→ (X ′,∗′, R′) in the subcategory InjSReln

∗ is obtained as follows:

• If S contains a trivial matrix, then (X ′,∗′, R′) is the zero object of Reln
∗ , i.e., X ′ = {∗′} and

R′ = {∗′}n, and the function f is the unique function f : X → {∗′}.

• If S does not contain a trivial matrix, then (X ′,∗′) = (X ,∗), the function f is the identity
function f = 1X and R′ ⊆ X n is the intersection of all relations containing R as a subrelation
and which are M -sharp for each matrix M in S.

Thus, a colimit of a small diagram in InjSReln
∗ can be obtained by applying the construction above

to the colimit of the same diagram in Reln
∗ . In particular, each (InjSReln

∗)
op is a finitely complete

pointed category. These remarks together with Theorem 2.2 bring us to the following result:

Theorem 5.1. Consider two matrix sets S and U. If for any non-zero natural number n, every n-ary
pointed relation R on any pointed set (X ,∗) that is M-sharp for every matrix M in S is N-closed for
every matrix N in U having n rows, then every finitely complete pointed category that has M-closed
relations for every M in S also has N-closed relations for every N in U, i.e., mclex∗S ⊆mclex∗U. The
converse is also true when no matrix in S is trivial.

Proof. Assume first that for any integer n > 0, every n-ary pointed relation R on any pointed set
(X ,∗) that is M -sharp for every matrix M in S is N -closed for every matrix N in U with n rows.
Consider a finitely complete pointed category C that has M -closed relations for every M in S.
Then every internal relation in C is M -sharp for each M ∈ S. Considering a matrix N ∈ U with
n rows, an n-ary internal relation r : R↣ Cn on an object C in C and an arbitrary object Y , we
need to prove that r is N -closed over Y . These induce an n-ary relation R′ on the pointed set
C(Y, C) for which g1, . . . , gn : Y → C are related if and only if there exists a (necessarily unique)
morphism v : Y → R such that ri v = gi for each i ∈ {1, . . . , n}. It is then easy to see that R′ is an
(ordinary) n-ary pointed relation which is M -sharp for each M ∈ S. Our assumption gives then
that R′ is N -closed, which implies that the internal relation r on C is N -closed over Y .

Now assume that every finitely complete pointed category that has M -closed relations for
every M in S also has N -closed relations for every N in U . Suppose also that no matrix in S is
trivial. Then no matrix in U can be trivial as well since, by Theorem 3.1, Setop∗ belongs to mclex∗S
and thus to mclex∗U . For each positive n, consider the full subcategory InjUReln

∗ of Reln
∗ consisting

of U-injective objects. We will now apply Theorem 2.2 to the category C= Reln
∗ . Let T be the set

of all non-trivial matrices. For any pointed set (X ,∗), the relation X n is clearly M -sharp for every
matrix M . So the object (X ,∗, X n) is a T -injective object in Reln

∗ . For any object (X ,∗, R) in Reln
∗ ,

there is a monomorphism into such object — namely, the inclusion (X ,∗, R) ↣ (X ,∗, X n). By
Theorem 2.2 we then get that InjUReln

∗ is the largest full subcategory of Reln
∗ having the following
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properties: it contains all T -injective objects, it is closed under finite limits and its dual category
has N -closed relations for every N in U . By Theorem 2.2 again, the subcategory InjSReln

∗ of Reln
∗

consisting of all S-injective objects has similar properties: it contains all T -injective objects, it
is closed under finite limits and its dual category has M -closed relations for every M in S. The
assumption that every finitely complete pointed category having M -closed relations for every M
in S has N -closed relations for every N in U gives that InjSReln

∗ must be a subcategory of InjUReln
∗

(note that, from the paragraph before the theorem, we know that the duals of these categories are
finitely complete pointed). So, for any non-zero natural number n, every n-ary pointed relation R
on any pointed set (X ,∗) that is M -sharp for every matrix M in S is also N -sharp for every matrix
N in U . In particular, this means that every such relation is N -closed for every matrix N in U
having n rows.

From the proof of Theorem 5.1 we can extract the following theorem, which says that in order
to prove an implication between matrix properties (in the finitely complete pointed context), one
only needs to produce a proof for a single particular category.

Theorem 5.2. Let S be a matrix set and let N ∈ matr∗ be a matrix with n rows. The following
statements are equivalent:

(1) mclex∗S ⊆mclex∗{N}.

(2) The category (InjSReln
∗)

op, which belongs to mclex∗S, also belongs to mclex∗{N}.

(Notice that in the case where S contains a trivial matrix, both statements are true and the
result thus also holds in that case.)

We now come to the following question. Given a matrix set S and a matrix N ∈matr∗(n, m, k),
how to decide whether every n-ary pointed relation R on any pointed set (X ,∗) that is M -sharp
for every matrix M in S is N -closed? Let us denote by col∗(N) the n-ary pointed relation on
{∗, x1, . . . , xk} containing exactly the left columns of N and (∗, . . . ,∗). Let us denote by colS∗(N)
the intersection of all n-ary relations on {∗, x1, . . . , xk} that contain col∗(N) as a subrelation and
that are M -sharp for all M in S. It is certainly pointed and M -sharp for all M in S. Therefore,
if every n-ary pointed relation on any pointed set (X ,∗) that is M -sharp for every matrix M in
S is N -closed, then the right column Nr of N belongs to colS∗(N). The converse is also true: If
Nr ∈ colS∗(N), then every n-ary pointed relation R on any pointed set (X ,∗) that is M -sharp for
every matrix M in S is N -closed. To see this, consider an interpretation





b11 . . . b1m b1 m+1
...

...
...

bn1 . . . bnm bn m+1





of N of type (X ,∗) such that every left column of the interpretation belongs to R. Let this inter-
pretation be given by a pointed map f : {∗, x1, . . . , xk} → X . Then the inverse image f −1(R) of
R along f will be a pointed relation on {∗, x1, . . . , xk} that is M -sharp for every M in S. Indeed,
every reduction of each M of type ({∗, x1, . . . , xk}, . . . , {∗, x1, . . . , xk}) whose left columns belong
to f −1(R) will have a further reduction by applying f to its entries, whose left columns belong
to R. Then, since R is M -sharp, f of the right column of the reduction will be in R, which means
the right column of the reduction will be in f −1(R). Now, since f −1(R) is M -sharp for every M in
S and since it contains col∗(N), it must also contain colS∗(N). The fact that Nr ∈ col

S
∗(N) will now

give that the right column of the above interpretation of N belongs to R. So Theorem 5.1 has the
following consequence.
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Corollary 5.3. Consider two matrix sets S and U. If Nr ∈ colS∗(N) for every matrix N in U, then
mclex∗S ⊆mclex∗U. The converse is also true when no matrix in S is trivial.

Note that colS∗(N) is necessarily finite (it is a subset of {∗, x1, . . . , xk}n, when N ∈matr∗(n, m, k)).
When S is finite, we can build colS∗(N) in finitely many steps as follows. For a given pointed relation
R ⊆ {∗, x1, . . . , xk}n, we consider the pointed relation S(R) ⊆ {∗, x1, . . . , xk}n containing exactly R
and the right columns of each row-wise interpretation B of type ({∗, x1, . . . , xk}, . . . , {∗, x1, . . . , xk})
of each matrix M ′ ∈ matr∗(n, m′, k′) whose rows are rows of a common matrix M in S such that
the left columns of B belong to R. The number of all possible such B’s is finite (as S is finite),
so S(R) can be built from R in finitely many steps. It is easy to see that if R ⊆ colS∗(N) then also
S(R) ⊆ colS∗(N). Now, starting with R= col∗(N), we can build a chain of proper subset inclusions

col∗(N) ⊂ S(col∗(N)) ⊂ SS(col∗(N)) ⊂ · · · ⊂ SS . . . S(col∗(N))

until S(R) for the last set R in the chain is equal to R. When this happens, R will be M -sharp for
every M in S, and hence R = colS∗(N). The chain does terminate after some finitely many steps
because each of the sets in the chain are subsets of the finite set {∗, x1, . . . , xk}n.

From the results above we can readily extract an algorithm for deciding mclex∗S ⊆ mclex∗U ,
when S and U are finite matrix sets. Note that the results did not give full characterization of
mclex∗S ⊆ mclex∗U when S contains a trivial matrix, however, when S contains a trivial matrix,
one always has mclex∗S ⊆mclex∗U .

The combined algorithm which deals with both the trivial and non-trivial matrices is then the
following. To decide whether mclex∗S ⊆ mclex∗U where S and U are finite matrix sets, do the
following:

Step 1. If S contains a trivial matrix (i.e., if S contains a matrix which does not satisfies the three
conditions in (3) of Theorem 3.1), then terminate the process with positive decision for
mclex∗S ⊆mclex∗U .

Step 2. For each matrix N ∈ matr∗(n, m, k) in U do the following. First expand the left part
of N with a column of ∗’s. Then, keep expanding the left part of N , until it is impossi-
ble to expand it further, with right columns of those row-wise interpretations B of type
({∗, x1, . . . , xk}, . . . , {∗, x1, . . . , xk}) of each matrix M ′ ∈matr∗(n, m′, k′)whose rows are rows
of a common matrix M in S such that the left columns of B, but not its right column, can be
found in the left part of N . If the expanded left part of N does not contain the right column
of N , then terminate the process with negative decision for mclex∗S ⊆mclex∗U .

Step 3. Reaching this step means that the process has not been terminated in the previous steps.
Then the process completes with positive decision for mclex∗S ⊆mclex∗U .

We conclude this section by recalling from [13] (and Theorem 4.2) that, given two matrices
M and N , the above algorithm cannot be used to prove that any pointed variety of universal
algebras with M -closed relations has N -closed relations. In general, this statement is weaker
than the statement mclex∗{M} ⊆mclex∗{N}. Actually, the statement mclex∗{M} ⊆mclex∗{N} is,
in general, even stronger than the statement that any regular [1] well-powered pointed category
with M -closed relations has N -closed relations. However, it is shown in [12] that if M is non-
pointed and N is the matrix from Example 1.4 determining Mal’tsev categories, this distinction
disappears. We refer the reader to [14] for a link of this case with the matrix class of majority
categories.
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6 Computer-assisted results

A computer implementation of our algorithm allows us to get a complete description of the posets
Mclex∗[n, m, k] for relatively small values of n, m, k. We present those results in this section.

Before displaying these results, we describe how we chose to represent the matrix classes in
the display. For each matrix class C ∈Mclex∗, and for each choice of integers n> 0 and m, k ⩾ 0,
consider the set Cn,m,k of all matrices M such that C = mclex∗{M} and M ∈ matr∗(n′, m′, k′) for
some n′ ⩽ n, m′ ⩽ m and k′ ⩽ k. Now consider the subset C R

n,m,k of Cn,m,k consisting of those
matrices that have minimal number of rows; the subsetC RC

n,m,k ofC R
n,m,k consisting of those matrices

that have minimal number of columns and the subset C RCV
n,m,k of C RC

n,m,k consisting of those matrices
whose entries lie in {∗, x1, . . . , xv} for the smallest possible v. We then view each matrix in C RCV

n,m,k
as a sequence of elements from {x1, . . . , xk,∗} by juxtaposing the transpose of each column next to
each other, starting with the right column and continuing with the left columns from left to right.
We order these matrices using the lexicographical ordering coming from this way of displaying
matrices and from the order x1 < · · · < xk < ∗. A matrix will be called an (n, m, k)-canonical
matrix if it is the smallest element of C RCV

n,m,k under this ordering for some C ∈Mclex∗. It is easy to
see that any matrix M ∈matr∗(n′, m′, k′)which is (n, m, k)-canonical for some n⩾ n′, m⩾ m′ and
k ⩾ k′ is also (n′, m′, k′)-canonical. In this section, we will however see that, for the matrix class
of strongly unital categories (see Example 1.4), the (2, 3,2)-canonical matrix is not the same as
the (3, 3,1)-canonical matrix. In the following lemma, we again consider that the set of possible
entries of a matrix is ordered via x1 < · · ·< xk < ∗.

Lemma 6.1. Let n> 0 and m, k ⩾ 0 be integers and M an (n, m, k)-canonical matrix. The following
properties hold for M:

• There exist integers a, b ⩾ 0 such that the right column of M consists of a many x1’s followed
by b many ∗’s.

• M has no duplicate rows or left columns.

• Each left column of M contains at least one variable (i.e., an entry different from ∗).

• The left columns of M are lexicographically ordered.

• The first a rows of M are lexicographically ordered.

• The last b rows of M are lexicographically ordered.

• For each of the first a rows of M and for each 1 < i < j ⩽ k, if x j appears in the left part of
the row, then so does x i and the first occurrence of x j appears after the first occurrence of x i.

• For each of the last b rows of M and for each 1⩽ i < j ⩽ k, if x j appears in the left part of the
row, then so does x i and the first occurrence of x j appears after the first occurrence of x i.

The proof of this lemma is similar to the proof of Lemma 4.1 in [13].

Proof. This follows easily from the fact that, given a matrix in some matr∗(n′, m′, k′), one can,
without changing the corresponding matrix property, do the following:

• in each row, permute the variables x1, . . . , xk′;

• permute the rows and the left columns;
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• delete the duplicated rows and left columns;

• delete a left column which contains only ∗’s.

We now show the computations of the posets Mclex∗[n, m, k] for various values of the parame-
ters n, m, k obtained by the computer. When displaying such a poset Mclex∗[n, m, k], we represent
each matrix class by the (n, m, k)-canonical matrix giving rise to the considered matrix class. This
matrix will be represented by a gird where the right column of the matrix is highlighted in gray
and where each variable x i has been represented by its index i. An arrow from a matrix M to a
matrix N represents the inclusion mclex∗{M} ⊆mclex∗{N}. We do not draw an arrow if it can be
obtained by a path of arrows (we thus display the reflexive and transitive reduction of the poset).

We start with Figure 1 which represents the posetMclex∗[2, 3,2]. According to our convention,
the bottom element of that poset is the matrix class generated by the trivial matrix

�

x1

�

, i.e.,
the collection of categories equivalent to 1. The top element is the matrix class generated by the
anti-trivial matrix

�

∗
�

, i.e., the collection of all finitely complete pointed categories. In view
of Example 1.4, the matrix on the left of the second row (from the top) represents the collection
of subtractive categories and the matrix on the right of the second row represent the collection of
unital categories. The matrix in the third row represents the collection of strongly unital categories
and the matrix in the fourth row represents the collection of pointed Mal’tsev categories. This
poset already illustrates a result from [17], where it is shown that a finitely complete pointed
category is strongly unital if and only if it is subtractive and unital. This situation is somehow
special as we recall that in general we do not know whether the intersection of two matrix classes
is again a matrix class. It also illustrates that pointed Mal’tsev categories are in particular strongly
unital, which was shown in [4]. We also computed the posetsMclex∗[2,14, 3] andMclex∗[2, 10,4]
which are both equal to Mclex∗[2,3, 2]. We therefore conjecture that Figure 1 shows all matrix
classes induced by two-row matrices, although we have not been able to formally prove it yet.

We then tackle the problem to compute all matrix classes induced by matrices with two left
columns. In view of the discussion at the end of Section 4, it is enough to compute the poset
Mclex∗[6,2, 1], which becomes an easy task for the computer. The results are displayed in Fig-
ure 2. Let us notice that all matrices represented there have at most three rows, which indicates
that the bound of 2mm − (m− 1)m − 1 from Section 4 might be far from optimal.

Our next display is Figure 3 which represents the poset Mclex∗[3, 6,1]. Since 6= (1+1)3−2,
this poset contains all matrix classes generated by a matrix with three rows and one variable.
The blue boxes group together the matrix classes which have same Bourn localization in Mclex,
i.e., same image under Loc: Mclex∗ → Mclex. The words appearing in some of these boxes
indicate the common Bourn localization of the matrix classes appearing in each of these boxes
(see Example 1.4). These conventions will be used also in subsequent figures as well. By a
minority category, we mean here a finitely complete category which has M -closed relations for
the non-pointed matrix

M =





x1 x2 x2 x1

x2 x1 x2 x1

x2 x2 x1 x1



 ,

extending the notion of a variety of universal algebras with a minority term. It can be easily
proved using our algorithm (see below) that the first matrix in the eighth row (from the top) of
Figure 3 represents the matrix class of strongly unital categories, represented by another matrix
in the third row of Figure 1 (which means in particular that the (2, 3,2)-canonical matrix for this
matrix class is not the same as the (3, 6,1)-canonical matrix). This leads to the following remark.
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Figure 1: Hasse diagram of the poset Mclex∗[2, 3,2].

Figure 2: Hasse diagram of the poset Mclex∗[6, 2,1].
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Remark 6.2. The collection of strongly unital categories is

mclex∗

§�

x1 ∗ ∗ x1

x2 x1 x2 x1

�ª

=mclex∗











x1 x1 ∗ x1

∗ ∗ x1 x1

x1 ∗ x1 ∗











.

In order to illustrate the algorithm, let us display some tableaux that represent the proof of
each inclusion of the above equality. These tableaux will be called lex∗-tableaux (analogously to
the ‘lex-tableaux’ from [13], where as usual ‘lex’ abbreviates ‘left exact’, a synonym of ‘finitely
complete’). A proof of the inclusion

mclex∗

§�

x1 ∗ ∗ x1

x2 x1 x2 x1

�ª

⊆mclex∗











x1 x1 ∗ x1

∗ ∗ x1 x1

x1 ∗ x1 ∗











can be represented by the lex∗-tableau

x1 x1 ∗ x1

x1 ∗ ∗ x1 ∗ ∗ x1 x1

x2 x1 x2 x1 x1 ∗ x1 ∗
∗
∗
∗

x1 ∗ x1 ∗ ∗
∗ ∗ ∗ ∗ ∗
x1 ∗ ∗ x1 x1

∗ x1 ∗ x1 x1

x1 ∗ ∗ x1 x1

x1 ∗ x1 ∗ ∗

where the double vertical line separates the two given matrices. In such a tableau, the matrix class
induced by the matrix in the top left is being proved to be included in the matrix class induced
by the matrix in the top right. The columns below the first horizontal line and on the right of the
double vertical line are being added to the left columns of the second matrix by the algorithm.
In the first step (just below the first horizontal line), we add a column of ∗’s as required by the
algorithm. Then, the added columns come from row-wise interpretations of the first matrix; these
row-wise interpretations are represented on the left of the double vertical line. Reaching the right
column of the second matrix in the last step proves the desired inclusion of matrix classes. The
following lex∗-tableau

x1 x1 ∗ x1

∗ ∗ x1 x1 x1 ∗ ∗ x1

x1 ∗ x1 ∗ x2 x1 x2 x1

∗
∗

∗ ∗ x1 x1 x1

x2 ∗ x2 ∗ ∗
x1 x1 ∗ x1 x1

∗ ∗ x1 x1 x1
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represents a proof of

mclex∗











x1 x1 ∗ x1

∗ ∗ x1 x1

x1 ∗ x1 ∗











⊆mclex∗

§�

x1 ∗ ∗ x1

x2 x1 x2 x1

�ª

.

Figure 3 illustrates the characterization of Mal’tsev categories in terms of the fibration of points
from [4] and [17] recalled in Section 4. From Remark 4.4, we know that Loc restricts to a
surjective order-preserving function Loc: Mclex∗[3, 6,1] ↠ Mclex[3,7, 2] where Mclex[3,7, 2]
has been displayed in Figure 2 of [13] and contains all mclex{M} for a non-pointed matrix M with
three rows, two variables and at least one left column. Therefore, we can recover from Figure 3
of the present paper that Mclex[3, 7,2] has 13 elements (represented by the 13 blue boxes).
Moreover, since Loc is an order preserving function, we know that an arrow in Figure 3 displayed
from a matrix in some box to a matrix in another box induces an arrow in the same direction
between the corresponding elements of Mclex[3,7, 2]. However, Figure 3 does not contain all
the information about Mclex[3,7, 2] as Loc does not reflect the order. For instance, any finitely
complete arithmetical category is a minority category, but no arrow in Figure 3 indicates this
implication. The ‘missing arrow’ appears in Figure 4.

Let us now consider Figure 4 which represents Mclex∗[3, 3,2]. This figure illustrates Re-
mark 4.3 since each non-pointed matrix represented in that figure is the bottom element of the
subposet of Mclex∗ formed by the blue box containing it. Moreover, the top element of Mclex∗ is
the only one in its blue box and similarly for the bottom element of Mclex∗.

We have also been able to compute Mclex∗[3, m, 2] for m ⩽ 6, but Mclex∗[3, 4,2] is already
too big to reasonably fit on one page. We have instead produced Figure 5 displaying the size of
these posets.

Figure 6 displays the poset Mclex∗[4,3, 1]. As we can see, even when considering one variable
matrices, the poset can quickly get complex.

We have also computed the posets Mclex∗[4, m, 1] for any value of m. However, for m = 4,
this poset already contains 156 elements and cannot be represented with enough readability on a
single page. We have instead displayed the size of these posets on Figure 7. Let us remark here that
the matrix classes of unital, strongly unital and subtractive categories respectively are elements of
Mclex∗[4,14, 1], while the matrix classes of Mal’tsev, majority, arithmetical and minority pointed
categories respectively are not elements of Mclex∗[4,14, 1].

We conclude the paper with the representation of some subposets of some Mclex∗[n, m, k]
formed by elements with the same Bourn localization. We start with Figure 8 which displays the
subposet of Mclex∗[3,4, 2] formed by matrix classes whose Bourn localization is the collection of
Mal’tsev categories. The analogous poset defined by replacing Mclex∗[3, 4,2] with Mclex∗[3,5, 2]
contains 268 elements and is too big to be reasonably displayed on a single page. As we already
know from Remark 4.3, the matrix class of Mal’tsev pointed categories is the bottom element of
this subposet of Mclex∗[3,4, 2]. The two maximal elements of this subposet are the matrix classes
of unital and subtractive categories. Their intersection (i.e., the matrix class of strongly unital
categories) is represented by the left matrix in the seventh row of that figure. Figure 8 gives thus
many more characterizations of Mal’tsev categories in terms of the fibres of the fibration of points
in the style of [4, 17].

Figure 9 represents the subposet of Mclex∗[4, 14,1] formed by matrix classes whose Bourn
localization is the collection of Mal’tsev categories. Since the matrix class of pointed Mal’tsev
categories does not belong to Mclex∗[4, 14,1], it is not represented on this figure. The bottom
element of this subposet of Mclex∗[4, 14,1] is the matrix class of strongly unital categories, rep-
resented here by its (3,3, 1)-canonical matrix. Again, the two maximal elements of this subposet
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Figure 3: Hasse diagram of the poset Mclex∗[3, 6,1].
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Figure 4: Representation of the poset Mclex∗[3,3, 2].
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m= 0 1 2 3 4 5 6
|Mclex∗[3, m, 2]|= 2 2 8 42 217 1137 5100

Figure 5: Size of Mclex∗[3, m, 2] for m⩽ 6.

Figure 6: Hasse diagram of the poset Mclex∗[4, 3,1].

are the matrix classes of unital and subtractive categories. Let us remark that, in both Figures 8
and 9, the number of elements between the matrix class of strongly unital categories and the
matrix class of unital categories is much bigger than the number of elements between the matrix
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Figure 7: Size of Mclex∗[4, m, 1].

class of strongly unital categories and the matrix class of subtractive categories. We can also ob-
serve that, although we considered all matrix classes in Mclex∗[4,14, 1] whose Bourn localization
is the collection of Mal’tsev categories, they are all represented by matrices with at most seven
left columns.

There are 123 matrix classes in Mclex∗[3, 6,2] whose Bourn localization is the collection of
finitely complete arithmetical categories, which is too many to draw them on a single page with
enough readability. Instead, we show in Figure 10 the subposet of Mclex∗[3, 5,2] formed by
those matrix classes whose Bourn localization is the collection of finitely complete arithmetical
categories. As expected, the bottom element of this subposet is the matrix class of arithmetical
finitely complete pointed categories. There are only four matrix classes in Mclex∗[4,14, 1] whose
Bourn localization is the collection of finitely complete arithmetical categories. Since they can all
be represented by a matrix in matr∗(4,3, 1), they appear in the same blue box in Figure 6.

Figure 11 represents the subposet of Mclex∗[3,5, 2] formed by matrix classes whose Bourn
localization is the collection of majority categories. The subposet of Mclex∗[3,6, 2] defined anal-
ogously having 89 elements, we choose not to represent it here for the sake of readability. The
subposet of Mclex∗[4,14, 1] formed by matrix classes whose Bourn localization is the collection
of majority categories has only 3 elements and is displayed in Figure 12. Notice that all the matrix
classes appearing there are represented by a matrix with at most four left columns.

We have found very few matrix classes whose Bourn localization is the collection of minority
categories. There is only one which belongs to Mclex∗[4, 14,1]: it is represented by a matrix in
matr∗(3,2, 1) in Figure 6. There are 12 which belong to Mclex∗[3,6, 2] and the corresponding
poset has been represented in Figure 13. As we can notice, all these matrix classes actually belong
to Mclex∗[3,5, 2].
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Figure 8: Hasse diagram of the subposet of Mclex∗[3,4, 2] formed by matrix classes whose Bourn
localization is the collection of Mal’tsev categories.
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Figure 9: Hasse diagram of the subposet of Mclex∗[4,14, 1] formed by matrix classes whose Bourn
localization is the collection of Mal’tsev categories.
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Figure 10: Hasse diagram of the subposet of Mclex∗[3,5, 2] formed by matrix classes whose Bourn
localization is the collection of (finitely complete) arithmetical categories.
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Figure 11: Hasse diagram of the subposet of Mclex∗[3,5, 2] formed by matrix classes whose Bourn
localization is the collection of majority categories.
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Figure 12: Hasse diagram of the subposet of Mclex∗[4,14, 1] formed by matrix classes whose
Bourn localization is the collection of majority categories.

Figure 13: Hasse diagram of the subposet of Mclex∗[3,6, 2] formed by matrix classes whose Bourn
localization is the collection of minority categories.
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